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ABSTRACT 

The effect of a non-zero vacuum gluon-condensate on heavy 
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quarkonia is discussed. As a function of the quark mass, it is 

determined which low lying levels of the spectrum are dominated 

by the one-gluon-exchange potential. 
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A useful feature of the observed heavy quarkonium states is that 

the energy gap between the ground state and the manifest flavor 

threshold is much smaller than the resonance mass itself. This implies 

a picture of non-relativistic heavy quarks whose interactions should 

be adequately described by potential models. In QCD, due to asymptotic 

freedom, it is well known that the short distance part of the potential 

is dominated by one gluon exchange, giving rise to a calculable 1/R 

potential. For the long-distance part of the interaction, various 

phenomenological potentials have _been postulated that reproduce the 

observed heavy hadronic spectrum. One of the hopes is that for very 

heavy quarks the bound state radius will be of a size that only 

samples the known short-distance part of the potential, allowing 

unambiguous theoretical calculations. A crude back-of-the-envelope 

estimate of how massive the quarks must be to see only the "color 

coulomb interaction" is made by requiring that ·the coulomb-like 

binding energy is much greater than some hadronic energy scale 

asr mQ > 
4 

l GeV 

choosing the strong interaction scale parameter A to be ""500 MeV, 

and the effective coupling constant to be at the scale of the bound 

state Bohr radius yields mQ > 25 GeV. 

It is now possible to determine more rigorously which low lying 

levels of the heavy quark bound state spectrum are dominantly 

(l) 

coulombic, as a function of the quark mass. The procedure will be to 

calculate the non-perturbative power corrections to the 1/R potential 

for large quark masses where these power corrections are small, and 

then de·termine how small the quark masses can become before the 
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coulomb approximatior. breaks down. The method for studying these 

non-perturbative effects is due to the pioneering work of Shifman, 

Vainshtein, and Zacharov 1]. Their technique is to extract the long 

rlistance behavior of in·ternal lines in Feynman diagrams systematically, 

and parameterize this dynru~ical contribution with experimentally 

determined quantities. As applied to a heavy quark-antiquark bound 

state, the procedure is to take the lowest order perturbative diagrams 

of Fig. l for gluon exchange within the QQ bound state and allow 

each gluon line to go soft individually. The soft line is cut, and 

the cut ends of ·the long 'Navelength line are allowed to propagate into 

the vacuum yielding the set of diagrams illustrated by Fig. 2. Note 

that the complete set of diagrams of Fig. 2 is exactly the set of 

diagrams considered by Peskin in determining ·the gauge invariant 

coupling of long wavelength gluons to a color-singlet heavY QQ bound 

state [2]. The well known result gives the first term in an operator 

product expansion 

(Fig. 2) = l lri 1 lg2GioGjo(O) J 
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where ri is the QQ separation in the bound state¢, is the 

Hamiltonian of the QQ in a color singlet (octet:) sta·te, £ is the 

the gluon field strength, 
uv 

is evaluated at Pauli spin matrix, and G 
a ' 

the origin of the bound state. The energy denominator can be further 

simplified by noting that for one gluon exchange H
8 

-
2 
~ 
81Tr By 

defining and Bi = ~ sijkGjk, and choosing ¢ to be a spin zero 
a 2 
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state 9 the expression simplifies to 

(Fig. 2) <¢Jr3J¢><ojg2Ea. jo> 
27a ~ ~ 

_,_ < ¢Jr1Q) > < ojg2Ba jo >. 
. 2 ~ ~ 

s 9asmQ 

Shifman et al have determined the vacuQm expectation vacuum 

expec·tation value of the square of the gluon field strength tensor 

from remarkably successful charmonium sum rules [ 3] . They find 

2 
~< ojGa Gvvalo > 
41T2 vv 

which implies 

M4 
0 

2 

so (330MeV)
4 

2 
2L < ojBa.Bajo > 

2 ~ ~ 
2L < ojEa.Ealo > 

2 ~ ~ 
'IT 1T 

We can now rewrite eq. 3 as 

(Fig. 2) + h M 

with 

< <1>-:':-l.:::-r 3.-Jic.::<~>_;>_ 'IT 2M 4 
27a o 
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hM < <lllrl¢ > 2 4 
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9a m 
s Q 

4 
M 
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( 3) 

(4) 

(5) 

(6a) 

6b) 

To determine how this long wavelength "vacuum gluon-condensate" affects 

the bound state Ha~iltonian, we will calculate the bound state 

propagator of the QQ system as illustrated by Fig. 3. 

(Fig. 3) lim dt e 
-i -s

1
Jt 

ll + + ... } = 
T-+ oo 

(7) 

X { 1 +I: + ... I 
with s

1 
the color singlet bound state energy. Using the iden·tity 
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idt A 
n 

(itA)n 

n! 

we can exponentiate the contributions of hE and hm to find the 

corrections to the color singlet Hat-nil·tonian 

s=o 
Hl 

-> Hs=O 
l 

4as 

3r 1
2 4 ] 1T M 

~ <<i>[r[<i>>+ 

l9Cid"Q r
1T2M41 
27a

0 
< <i>[r

3
[<i> > 

' sj 

(8) 

(9a) 

for the spin-zero bound state. Going back ·to eq. 2, we can do similar 

manipulations for the spin-one bound state, yielding 

..,. s=l 
Hl 

4a r 1T
2

M4 l ! 2 4 1 s o 1T M :;;::-- l --2J < <i>[r[<i> > + ~o_ 
27a m 27a 

s Q s 

< <i>[r3j<i> > 

We are now in a position to determine when the coulombic 

approximation is a valid one for a given quark mass, and a specified 

energy level. First note that the "magnetic" term proportional to 

(9b) 

< <P!r[<i> > is always much less than the "electric" term proportional to 

< C/l[r3[<!> > for a < 1. 
s 

Thus, to determine when the coulomb 

approximation is valid, we can define ·the ratio 

f 1T2M4l 

l27a:J <<P[r
3

l<i>> 

R 

<<P <i>> 

Hhich is the ratio of the energy of the non-perturbative power 

corrections to the coulombic binding energy. If R << l, the state <i> 

can be well described by a coulomb wavefunction. In Fig. 4 we plot 

.R as a function of quark mass for the n = l, 2, 3 levels of the 

coulomb spectrum. The coupling constant in the expression for R is 

(10) 
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normalized to be as (mQ =l. 5 GeV) = . 3, as determined from potential 

model fits to charm onium [ 4] , and it's scale is the bound state Bohr 

radius. If, for example, we decided that R < .2 implies a reasonable 

coulomb dominance, the ls level would be coulombic for mQ > 10 GeV, the 

2P levels for mQ >50 GeV, the 2S level for mQ > 60 GeV, etc. 

To estimate the accuracy of these predictions, we must address 

two points. The first is a guess of the size of the contribution from 

higher dimensional operators in the operator product expansion. 

· · 1 . ( a a DllnensJ.ona ly we expect hJ.ghex· order operators D]JG]laDvGva 

fabcGa Gb Gc 
]1\! VO 0]J 

... ) to contribute with corresponding additional 

powers of '1,' and the coefficient functions to contribute corresponding 

powers of the Bohr radius, a
0

. The effective expansion parameter is 

(M
0

a
0

) ~ .15 for mQ ~ 20 GeV, and decreases as 1/mQ. Secondly, we 

must determine how the uncertainty in M
0 

affects our results. 

Shifman et al estimate that (M ) 
4 

is known to within a factor of 
0 

two. Shifting the normalization of our curves for R by a factor of 

two induces an uncertainty in our determinations of mQ of roughly 

± 25%,. 

Thus we see that one-gluon-exchange dominance occurs for quark 

masses substantially larger than present energies. This is as 

expected from the simple estimate of eq. l, but our new estimates 

are much more quantitative with a firm theoretical founda·tion. 
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FIGURE CAPTIONS 

Figure 1: Lowest order perturbative diagrams for gluon exchange 

within a QQ bound state. 

Figure 2: Sum of diagrams generated by cutting the soft gluon lines 

of Fig. l. 

Figure 3: Vacuum gluon condensate contribution to the QQ propagator. 

Figure 4: The quantity R, as defined in eq. 10, as a function of 

for the n = 1, 2, 3 levels of the coulomb spectrum. 
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